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UNSTEADY VISCOUS FLOW IN THREE DIMENSIONS 
AND AROUND PLANE SURFACESt 
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(Received 2April 1997) 

Exact solutions are obtained for certain problems of the unsteady flow of an incompressible viscous fluid in the case of velocity 
distributions for which the Navier-Stokes equations become linear. Unlike previous solutions of these problems, more general 
boundary conditions and flow non-uniformity are taken into account. The smoothing of a velocity discontinuity and vorticity 
propagation in three dimensions is considered as well as fluid flow over an infinite plate, in an infinite two-sided comer and 
between parallel plates. © 1998 Elsevier Science Ltd. All fights reserved. 

1. S M O O T H I N G  O F  A V E L O C I T Y  D I S C O N T I N U I T Y  
A N D  V O R T I C I T Y  P R O P A G A T I O N  

In the rectangular Cartesian system of coordinates Oxlx2z3, the velocity components  in the three directions are 
taken to be of the form 

u I = u I (x 3, t), u 2 = u 2 (x3, t), u30 = const 

The incompressibility condit ion is then satisfied identically, and the Navier--Stokes equations take the form 

~uk ~uk = _ L  ~P +va2Uk 
3t +u3° 0x 3 13 Oxt Ox 2 , k = l , 2 ; p , v = c o n s t  (1.1) 

For the motion of a fluid which occupies the whole space, the initial velocity distributions are assumed known 

u s (x 3,0) = ~0~ (x~), k = 1, 2 (1.2) 

The pressure in the whole space is taken to be constant (iSp/fixk --- 0, k = 1, 2). 
Together with the fixed system of  coordinates Oxlx2x3, we introduce a moving system O°x~xO2x° 3 for which x~ = 

xl, x~ = x2, x~ = x3 - u30t, t ° = t. In  the new variables, the equations contain no terms of the form of the second 
terms of  the left-hand side of  (1.1). Solving Cauchy's problem [1] for these equations, which are autonomous,  with 
initial conditions uk(x3, 0) = ¢Pk(x~) and reverting to the original variables, we obtain the solution of  problem (1.1), 
(1.2) 

ut¢ (x3, t) = ~ G(x 3 - u30 t, ~, t)tp~ (~)d~, k = 1,2 

(1.3) 

. . 1 I- (x~ - u30t- ~)2 l 
G ( x 3 - u 3 ° t ' ~ ' t ) = ' 2 - ~ T e x p [ -  " 4vt  J 

For t > 0 Poisson's integral (1.3) represents a bounded solution of the equation for any bounded function I tp(~) I 
< Mwhich,  when t = 0, continuously adjoins q~k(x3) at all points of continuity of that function; the function 9k(x3) 
can have a finite number  of  points of discontinuity of the first kind. 

Suppose the initial velocities have constant  but  different values forx3 > 0 andx3 < 0 

, [vt ,  
uk (x3,0) = q~k (x3) --- I, vk, 

In  that case formulae (1.3) become [1] 

x 3 > 0  

x3<0 ;  k = l , 2  
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uk(x3, t )  = [ tA  + vk +( t : ,  - vk)~(z)]/2, k = 1,2 

(1.4) 

* ( z ) = ~ - !  exp(-ct2)dtz, z = ~ 2 ~ l v t  

For the solutions obtained in [2, 3] the planex3 = 0 was a surface of discontinuity of the velocity in one direction 
(u2 -= 0). In contrast, formulae (1.4) give a solution for the smoothing of a velocity discontinuity in a flow with 
known constant velocity u3 = u30 in which, initially, the angle between the two uniform flows is, generally speaking, 
different from 0 and x, that is, the problem is non-planar. 

We shall now assume that 

u 2 = u20 = const, u 3 = u 3 0  = const, u I = u I ( x 2 , x 3 , t )  

Then the incompressibility condition is satisfied identically, and the Navier-Stokes equations give 

~ul aui + aul 1 ap (~2uj ~2ul 
u , o  . . . . .  I (1.,) 

~t ~x 3 p ~x l 

For a fluid which occupies the whole space, we shall assume that the pressure is constant over the whole space 
and the initial velocity distribution is known 

ul (x2, x3,0) = ;(x2, x3) 

By analogy with (1.3) we find the solution of problem (1.5), (.6) 

Ul(X2"X3,t)= ~ 7 G(x2-u20t'x3-u30t' t '~2'~3);(~2'~3)d~2d~3 
- . o o  

(1.6) 

(1.7) 

Let 

G(y2 'Y3 ' t ' ~2 '~3 )=4~ texp[  (Y2-~2)2+(y3-~3)214"wt "J 

~(x2 'x3)={  U'O, V(x 2 ,(x2'x3)EQ={0<~x'9'<**'x 3 ) ~ Q 0<~ x3 <**} 

After some reduction, instead of (1.7) we obtain 

4L k 2"4Vt )J[. ~. 24Vt )J 

This is a solution of the smoothing problem in a flow with velocity components u2 = u20, u3 = u30 where a uniform 
flow which occupies an infinite two-sided corner is in contact with a fluid at rest. 

For the vorticity propagation problem, we shall assume that the projections of the velocity onto the axes of 
cylindrical coordinates r 0, z at the initial time have the following values 

u r = a I cos0 + a 2 sin0, u 0 = or(r)- a I sin0 + a 2 cos0, u z = ~J(r) + a 3 

where al, a2, a 3 = const. 
In this case the vorticity distribution at the initial time is given by the formulae 

rotu = {f~,,f~o,f~z}, t), = O, t) o = --~-_"a fir = I d(~(r)) = to(r) 
' r dr t ~ r  

On the basis of the form of the initial conditions, we shall assume that uk = uk(xl,x2, t) (k = 1, 2, 3), and represent 
the velocities in the form Uk = uk(xl,x2, t) Vk(Xl,X2, t) + ak(k = 1, 2, 3). We introduce a moving system of coordinates 
O*x*lx~x~ for which x~ = Xl - alt, x~  = X 2 - a 2 t  , x ~  ---- X3, t ° = t. Then, changing to cylindrical coordinates r*, 0", z ° in 
this moving system of coordinates, we find that the equations for Vzo = Vz* (r*, t °) and f~z* = (z°) q O(r*va.(r*, t°))/Or * 
are autonomous and of  the same form. Moreover, the equation for z ° is similar to the equation for the analogous 
vorticity component in the case of  the vorticity diffusion in a medium at rest. Thus, using the known solution [2], 
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we have 

o o l r 02 S 2 s r  ° 
~ .  , r  ,t ' : '2--~. .  exp(--i-L-7__, ) 7 to(s)exp(-.-i-.~_..IJoC--lsds 

zvt  ~ 4vt )~  [. a r t  ) [2v t* j  

and a similar expression for Vz* (r °, t °) (with t0(s) replaced by ~(s)), where Jo is a zero-order Bessel function of the 
first kind. 

Writing the solution as the projection of the velocity onto the axes of cylindrical coordinates, we obtain 

Ur(r,O,t) =v0. (r°,t*)sin(O-O°)+al cos0 +a  2 sin0 
(1.8) 

uo(r,O,t) =re .  (r°,t*)cos(O-O*)-al s in0+a  2 cos0 

u,(r,O,t) =vz. (r*,t°) + a3 

r ° [r2-2rt*(alcosO+a2sinO)+(a 2 2x. : ' ]~  rsinO-a2t* 
= L ~  +a21, ] , tgO*= " 

rcosO- a I t *  

r ° 

%0 (r°, t°) = ~  I ~ °  (r°,t°) r°dr°, t ° =t 
r o 

The vorticity distribution is found from the formulae 

n,_=o, ao=-a-~, n. l[a(r,,) ] 
ar =7LN ~'~"" (1.9) 

Thus, whereas the solution obtained in [2] was for the plane problem of vorticity diffusion in a medium at rest 
(al, az, a~ ~ 0, l~(r) --- 0, formulae (1.8) and (1.9) give the solution of the problem ofvorticity propagation in drifting 
flow. 

2. T H E  F L U I D  M O T I O N  O F  A L I Q U I D  O V E R  A P L A T E  

We will now consider the flow over an infinite plane surfacex3 = 0: it is required to find a solution of Eq. (1.1) 
(u30 = 0) in the region 0 < x3 < o., 0 < t which satisfies the conditions 

Uk(X3,0)=Cpk(X3), k=l ,2 ,  0~<x3 <.o 

u k (0,t) = P'k (t), u k (**,t) = Utr (t), k = 1, 2, 0 ~< t 

This is a more general problem than the plane problem [3, 4], in which the plane boundary is suddenly put into 
motion in a fluid at rest, or a plane wall performs rectilinear harmonic oscillations in its own plane in a fluid at 
rest. In this case allowance is made for arbitrary initial conditions, the motion of the wall and the "free-stream 
velocity" far from the wall, when the angle between the "free-stream velocity" and the wall velocity is possibly 
different from 0 or ~, so that the problem is non-planar. 

The solution can be represented in the form 

u k (x3,t) =V k (x3,t) + U k (t) - Uk(O ), V k (x3,t) =Vkl (x3,t)+Vk2(x 3 ,t) 

V kl (X3,t) = y g(x3,~,t)(pk (~)d~, vk2 (x 3,t) = 2V i aG(x3'O't - "0 (:zk (z)a~ 
o o a~. 

g(x3,~,t) = exp - (x3-~)2 - e x p  
4vt 4vt JJ 

cti(t)=btk(t)+Uk(O)_Ut(t), _.d.Ut =1 ~P , k = l , 2  
dt p ~x k 

Suppose that the plate is not only moving in its own plane at a velocity {IJ.l(t), g2(t)}, but also in a perpendicular 
direction with constant velocity u30. The boundary conditions will then be 



486 V .G.  Zhar inov  

ut(u3ot, t) = Ixt(t), k = !,2,0 ~ t 

In a moving system of coordinates, the problem reduces to the previous one. Therefore, one solution is given 
by the above relations, with x3 - u30t instead of x3. 

The functions uta(x3, t), which allow for the motion of the wall, are defined for any bounded piecewise-continuous 
functions ~t(t) [1]. It is thus possible to model the various flows caused, in particular, by the wall that starts to 
move or stops abruptly. Suppose, for example, that the plane wall, previously at rest, suddenly starts to move 
in its own plane at a constant velocity Ix1 in the direction of the Oxt axis. At a time t = h, the wall suddenly 
stops, and at a time t -- t2, t2 > tl, it suddenly starts to move in its own plane at a constant velocity IX2 in the Ox2 
direction. 

In this case, the boundary conditions have the form 

u,(x3,0)---O, u,(*o,t)=-O, k=l ,2  

i '  t ~ 0  { 
U l ( 0 , t )  =const, 0 < t ~ h ;  u2(0,t)= O, t<.t2 

= IXl IX 2 =corot, t I < t  2 < t  
, t I < t  

Only the functions u~  appear in the solution. Up to time t = t2, the flow is plane; for t > t 2 the flow is three- 
dimensional, owing to the motion of the wall in the Ox direction and the Ox2 direction 

[ Ixl [1 - ~I)(Z)], 0 < t ~ t j  

ut(x3't)=lIxl[*(z( l.fi'--~i-ti l t)-I)-~(Z)],  t I <t 

u2(x3,t)=Ix2[1-~(Z(41-t2lt)-¥)], t 2 <t, z = x 3 ( - ~ )  - I  

For flow over a permeable plate, when there is a fluid suction at a constant rate u30, the solution can be represented 
in the form 

ut(x3,t)=o,l(x3,t)+vt2(x3,t)+Ut(t)-Uk(O), k = 1,2 

"1, 4v )o 

Iv ( t - ' 0 ]  "~ "~ 4V(t- X) J 

xtIx, (X) + U, (0) -  U, (x)ldx 

U 3 = U30 

We will consider another problem of the fluid flow over a permeable plate which moves in its own plane. 
Suppose there is a fluid suction at a constant rate u30. For u 1 we have Eq. (1.5) (u~ = 0). The boundary conditions 

are 

ul (x2,x3,0) = ~(x2,x3), -** < x2 < **, 0 ~ x3 < ** 

uj (x2,0,t) = Ix(t), 0 <~ t; uj (x2,**,t) = U(t), 0 <~ t 

Using the variables 

t 
v -- ul + f/(t)dt, w = ~ exp(-~ 3 - 13t) 

o 

where.f(t) -- p-1~p/~xl, a = u30/(2v ), 13 = -u~o/(4v) and continuing ~(x2, x3) as an odd function of the variable x3 
in the region --~ < x 3 < O, we obtain the solution 

ut (x2,x3,t)--v t (x2,x.a,t) +v2 (x3,t) + t./(t)- V(O) 

/ 2 ~.0.. 

l, 4v )-.o 
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( [X3-U30(t-f)12.]× Z3 
V 2 ( X 3 , t ) =  U exp -  4V(t-X) ) 

[v( t -x)]  ~ 

x[t~(~) + u ( 0 ) -  U(~)]d~ 

u 2 =0, u 3 =u30 ( -dUIdt=f( t ) )  
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3. F L O W  I N  A N  I N F I N I T E  T W O - S I D E D  C O R N E R  

It is required to find a solution of Eq. (1.5), where u20 = 0, u30 = 0 in the region 0 < x2, x3 < o~, O < t, which 
satisfies the conditions 

UI(X2,X3,0)=~(X2,X3) , 0<~X2,X3 <oo 

ul(O, x3,t)=O, ul(x2,0,t)=O, 0~<x2,x3 <~,, O~<t 

ul (~,oo, t) = t/(t), 0 <~ t 

The solution can be written in the form 

Ul (x2,x3,t) = ~ ~ g(x2,~2,t)g(x3,~3,t)~(~2,~3)d~2d~3 + 
O 0 

t . o o  dU 
+~ J I g(x2,~2,t-'f)g(x3,~3,t-'c)-~d~2d~3a'f 

o o o  

(dU I dt = -p - I~p l  ~xl ) 

4. F L O W  B E T W E E N  P A R A L L E L  P L A T E S  

We will consider a more general problem than that of the flow caused by the sudden motion of a solid boundary 
relative to a different fixed boundary [3]: it is required to find the solution of Eqs (1.1) in the region 0 < x3 < l, 
0 < t, satisfying the conditions 

uk(x3,0) = ~l(x3), 0 ~< x 3 ~ l; ut (O,t) = glk(t), uk(l,t ) = ~t2t (t), 0 ~< t; k = 1,2 

Since p-lBp/~ck = fk(t), we have the solution [1] 

I t 1 
u k (x3,t) = ~ G(x3~ ,t)X k (~)~ + ~ ~ G(x3, ~,t - z)h k (~,'~)d~d~ + 

0 oo  

+P-tt (t) +-~-[ti2t (t) - txj, (t)] 

where 

(4.1) 

Xk (~) = ~(~)- ;hk (0)- ~[~2,(o)-  ~k (o)] 

,.=, e,,PL-t.T) k= 1,2 

The functions ~ ,  p~, ~tzt, fk and the quantity I are known. The initial functions ~(x3) can be piecewise-continuous 
and might not be matched to the boundary conditions [1] (~(0) ~ gu~(O), ~(/) ~ Ix~(O), k = 1, 2, so that the relations 
apply in the case where the walls suddenly start to move). The vectors of the velocity of  motion of the solid 
boundaries {gn, g12}, {gn, g22} might, generally speaking, be non-coilinear. 
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Suppose that the fluid is initially at rest and moves as a result of the lower boundary instantaneously acquiring 
a constant velocity U in its plane in the Oxl direction, and the upper boundary instantaneously acquiring a constant 
velocity Vin its plane in the Ox 2 direction. From (4.1) in this case we obtain 

_ e " P [ - t , T )  ,.jsin 7 
l ~ n-I n 
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